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Abstract. We report on experiments, and their analysis, on electron heating effects in 3.2 pm 
long free-standing fine wires (triangular cross-section with ~ 0 . 5  pm side) of single-crystal 
GaAs doped at 10” ~ m - ~ .  The data can be used to extract a thermal conductivity that has a 
linear temperature dependence, consistent with a contribution from electrons and/or one- 
dimensional phonons. We show that the electronic contribution dominates. 

1. Introduction 

The physics of free-standing fine wires has all the ingredients of one-dimensional elec- 
tronic behaviour as realised in other systems, e.g. fabricated conduction channels in 
semiconductor multilayer structures (Wharam et a1 1988, Smith et a1 1988, Reed et a1 
1988), and fine metallic interconnects (Beutler and Giordano 1988), etc., with the added 
feature that the lattice vibrational modes are confined at least in their lateral propagation. 
In our previous studies of free-standing wires, the amorphous nature of silicon nitride 
(Lee et aZ1984) would have resulted, and the polycrystalline nature of gold-palladium 
alloys (Smith and Wybourne 1986) actually did result, in very short mean free paths for 
the phonons. These in turn masked any of the specifically one-dimensional phonon 
effects on the thermal properties of such wires, as predicted by Kelly (1982). (See also 
Jackle (1981) and Maynard and Akkermans (1985).) Even in alloy wires with 30 nm 
diameter, the results of electron heating experiments (measurements of the electrical 
resistance as a function of current) could be explained satisfactorily by invoking the 
Weidemann-Franz law to relate the electrical and thermal conductivity, and allowing 
the heat generated in the wires to be conducted out through both ends. The measured 
changes in the resistance were quite modest, so changes in the thermal conduction 
processes would be hard to extract, in contrast to the situation described below. 

In order to see any quasi-one-dimensional phonon transport, as opposed to the more 
readily observed electronic effects, it has been appreciated that single-crystal wires are 
essential. When one considers the fabrication processes of epitaxial deposition, fine-line 
lithography, and plasma or other etching techniques, the range of materials suitable for 
the production of single-crystal fine wires is limited. We have recently succeeded in 
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fabricating free-standing wires of GaAs (Hasko et a1 1988) etched from material doped 
at 1017 cm-3 deposited on semi-insulating GaAs, and have undertaken basic low-tem- 
perature transport and magnetotransport studies. These confirm that in triangular wires 
of order 0.5 pm side, the depletion in from the side-walls leaves a conducting channel 
of order 0.12 pm diameter. The temperature dependence of the resistance is consistent 
with one-dimensional weak localisation and three-dimensional electron-electron inter- 
actions dominating the quantum corrections to the Boltzmann conductivity (for details 
of the transport experiments and their interpretation, see the companion paper, Potts 
et a1 1990). 

Our present structure is already in an interesting regime as far as thermal transport 
is concerned. Measurements of the thermal conductivity of GaAs at low temperatures, 
and over a range of doping that spans our value (Holland 1963, 1964), indicate that 
boundary scattering of phonons limits the low-temperature thermal conductivity in 
samples with lateral dimensions of order 0.5 cm, and that the doping has its main effect 
in limiting the maximum conductivity at near liquid nitrogen temperatures. Our samples 
have lateral dimensions lo4  times smaller. The precise measurements of thermal proper- 
ties have always been a much more difficult task than their electrical counterparts, and 
so in this paper we discuss a series of experiments on electron heating. The resistance of 
free-standing wires was measured and analysed at five different lattice temperatures 
(between 0.47 K and 4.2 K) as the current was increased. Here we can easily achieve a 
25% change in the resistance as the current is increased to typically 50 nA through each 
of 27 wires in parallel. 

The plan of the present paper is as follows: in the next section we give a brief summary 
both of the structures used in these experiments and the method of their fabrication. We 
also review the results of previous transport measurements in so far as they are invoked 
for the present study. In the subsequent sections we describe (i) the electron heating 
experiments, (ii) a solution to the relevant thermal transport equations, (iii) an analysis 
of the experimental results, and (iv) the implications of this analysis. We find that a 
model invoking electron heating is able to account for the data within the accuracy of 
the measurements. 

2. Fabrication of free-standing wires 

The gallium arsenide free-standing wire sample consisted of thirty identical parallel 
wires, each of 3.2 pm length and 0.5 ,um width, connecting a pair of pads, and each pad 
had two ohmic contacts to permit quasi-four-terminal electrical measurements. These 
were fabricated using a combination of electron beam lithography and wet chemical 
etching (Hasko et a1 1988). PMMA resist on a (001)GaAs surface was patterned to give 
stripes of resist parallel to the [001] direction; this was then used as an etch mask for use 
with a 10 : 1 citric acid/hydrogen peroxide etch. This anisotropic etch gives an undercut 
profile revealing slow-etching (221)A and (111)A planes. As the etching proceeds, the 
resist bar is undercut and leaves a free-standing triangular section of GaAs. The slow- 
etching planes yield very smooth and uniform surfaces to the wire, this being important 
in the reduction of scattering processes in subsequent transport experiments. Wires have 
been fabricated using a 1 pm thick epitaxial layer of GaAs doped at cm-3 Si, which 
was grown by MBE on a semi-insulating wafer. Isolation was achieved by choosing an 
etched depth that was greater than the epitaxial layer thicknesses and by etching a trench 
around the contact pads and wires. Ohmic contacts were made using AuGePd and were 
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rapidly sintered; these also acted as bond pads. The conducting area of the wire is less 
than the total cross-sectional area due to surface depletion, and this results in an 
approximately circular conducting section of diameter -125 nm for wires of this size 
and doping. Inspection of the structure in an SEM indicated that 3 of the 30 wires had 
broken, or were too thin to conduct, and we assume that 27 wires are conducting. 

3. Previous transport studies 

Detailed low-temperature and magnetoresistance measurements have been made on 
this sample and the results (Potts et a1 1990) are used as inputs to the analysis of the 
electron heating experiments performed here. An AC lock-in technique was used to 
measure the resistance of the sample with sensing currents of 0.3 nA per wire, so as to 
avoid any of the self-heating effects that we examine in this paper. Between 0.475 K and 
4.2 K, the conductance per unit length of the sample increases logarithmically with 
temperature: 

G(7') = 2.79(1 + 0.10161n(T/K)) x !X'm. 

This leads to approximately a 20% variation of resistance over the temperature range, 
which is used as a 'thermometer' in the experiments below. Further measurements were 
made up to 10 K,  with broadly a similar temperature dependence being followed, a 
fact that is important in sections 6 and 7 below. While a logarithmic variation with 
temperature is usually characteristic of two-dimensional electron transport, a further 
analysis of the details of the dependence of the resistance on both magnetic field and 
temperature leads to a clear identification of one-dimensional weak localisation as being 
responsible for 70% of the temperature dependence, and the remainder coming from 
three-dimensional electron-electron interactions. In the analysis in section 7, we account 
for the three-dimensional character of the electron motion. The analysis leads to a 
consistent interpretation of the data using parameters for the diffusion constent of the 
electrons, the relevant screening parameters, the characteristic scattering lengths for 
the electrons, and the recent theories of quantum interference in reduced-dimensionality 
semiconductors. Having established the physical origin of the temperature variation of 
the conductance, we can appeal to this during the interpretation of the data we present 
in the following sections. 

4. The electron heating experiments 

Whereas the sensing current was kept low in the measurements of the resistance as a 
function of lattice temperature in the previous section, the experiments were repeated 
with currents of up to 50 nA in each wire. The resistance of the sample as a function of 
current, R(Z), fell by as much as 20% with rising current, consistent with a rising 
temperature in the centre of the wire. Experiments were carriedout between 0.475 K and 
4.2 K, with qualitatively the same behaviour being seen throughout. The measurements 
were carried out as follows: a DC bias in series with a 10 mV AC signal is passed through 
a 1 MQ resistor, which in turn is in series with the sample. Four-terminal measurements 
of the AC differential resistance were made using standard phase sensitive detection 
techniques. The AC sensing current is again of order 0.3 nA per wire. 



1820 A Potts et a1 

5.  Heat conduction in fine wires 

We set out to solve the following heat conduction equation for the temperature dis- 
tribution T(x) along a free-standing wire between x = 0 and x = L :  

where A is the cross-section of the wire, I the current in the wire, p(x) = p(T(x)) the 
resistivity along the wire, assumed to have a value determined by the local temperature, 
and K( T )  the three-dimensional thermal conductivity: if we multiply K( T )  and A 
together, the result is the equivalent ID thermal conductivity which features in the 
sections below. Already one problem is raised: strictly, if we consider the electronic 
contribution to the thermal transport, the cross-sectional area is that of the conducting 
channel, while if we consider the lattice contribution, the area on the left-hand side of 
(5.1) is that of the whole wire. Ultimately there is a factor of 2-4in the samples considered 
here, but we can avoid the problem since the combination p(x)/A on the right-hand 
side of equation (5.1) is equal to R ( x ) / L ,  and resistances and lengths are available 
experimentally in the case of low currents where electron heating is assumed negligible. 
From the earlier transport studies (Potts et a1 1990), we write the resistivity using the 
form for the conductance given in section 3. Using To as the lattice temperature in the 
contacts, and T the excess local temperature, we consider two forms of the thermal 
conductivity writing (i) K = q(T,  + T )  for the electronic case where q is assumed to 
contain the specific heat factor (which also provides the linear temperature dependence), 
themeanvelocityandmeanfreepathterms, allfortheelectrons, and(ii) K = A(To + T ) 3  
for the lattice contribution if we assumed the bulk 3D lattice conductivity were to apply 
(see Ashcroft and Mermin (1976) for details of both forms of the thermal conductivity), 
and that the electron-phonon interactions is sufficient for both electrons and phonons 
to be in equilibrium with each other along the wires. It should also be noted that if ID 
lattice conduction dominates the heat transfer, the analytic structure of solution (i) 
applies, as the temperature dependence comes entirely from the specific heat term which 
is linear in temperature in ID,  but where the q is now of phonon origin, containing elastic 
constants, densities etc. (see Kelly 1982 for details). The method of solution of the 
differential equation is the same in the two cases. If we define in the respective cases (i) 
y(x) = (T(x) + To)* and (ii) z(x) = ( T ( x )  + 

or (ii) 
(5.2b) 

where qj = 2Ro/qL and qz = 4Ro/AL, where L is the wire length, and R ,  is the 
characteristic resistance of the problem, obtained from the 1 K value of G ( T )  in the 
previous section. @is the coefficient of the In T term in (3.1). We solve the equations for 
qY and qz numerically, subject to the boundary conditions that T = To at bothx = 0 and 
x = L.  We assume that, with a profile for T(x), we can define a local contribution to the 
resistance and hence obtain the resistance of the wires as 

- (d/dx)((K(T)A d T/dx) = power generated per unit length = Z2p(x)/A (5.1) 

then equation (5.1) becomes (i) 

- d2y/dx2 = - qyZ'l/[l + (@/2) ln(y(x))] (5.2a) 

- d2z/dx2 = - qZZ21/[l + (/3/4) ln(z(x))] 

(5 .3)  

In fact, in the subsequent fitting of the experimental data, we minimise as a function of 
q the expression 

the sum being taken over all the data points for different currents. If we examine 
wwexp/RP,xp(I = 0) - R & / R &  = O N 2  (5.4) 
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Table 1. Fit to a linear temperature dependence; K = qT. 
~~~ ~ ~~~~~ 

Lattice temperature (K) 0.47 0.81 1.02 1.25 4.2 
(pi) from fit 1.18 0.96 0.84 0.71 0.85 
Residual (%) 0.15 0.08 0.04 0.04 0.05 

Table 2. Fit to a cubic temperature dependence; K = ,IT3. 

Lattice temperature (K) 0.47 0.81 1.02 1.25 4.2 
(qz)  from fit 1.12 1.82 2.21 2.59 32.2 
Residual (%) 0.4 0.09 0.04 0.05 0.05 

equations (5.1)-(5.4) we see that all the symbols are either fixed temperatures (To ,  
known from the experimental conditions) or are independently measured (such as 
current, wire length or low-current resistance) except for q ,  and it is with respect to the 
combination of constants in q that we minimise the sum in equation (5.4). In fact v, is 
basically a measure of the relative electrical and thermal capacitiesof the wire, expressing 
the scale of temperature rise that a given current can produce. While we discuss the 
physics in the next section, we note here that the fitting procedure gives unique and 
stable solutions for q. Viewed purely as a fitting problem, the residuals per data point 
are less than 1%.  For reasons of numerical accuracy, the units of current and length in 
the calculations are 1 nA and 10 ,um respectively, and the renormalised value of q in 
these new units, written (q), is of order unity. (Note: this scaling of current and length, 
by factors of lo9 and lo5 respectively, leads to a lo2* correction factor to be applied to 
obtain the value of v, in SI units, because of the I 2  dx2 combination in equations (5.1) 
and (5 .2) . )  The results below show a comparable fit, over the entire temperature range, 
to a yT and a AT3 form for the thermal conductivity. 

6. Fitting analysis of the heating experiments 

In tables 1 and 2 we summarise the results of the fitting of theory and experiment. In 
figure 1, we show the fits to the experiments for both the linear and cubic temperature 
dependence. One sees from the constancy of (qY) how much better a linear temperature 
dependence is for the thermal conductivity: indeed the temperature dependence of (qZ) 
is consistent with trying to force a linear temperature dependence on K. The residual 
fitting errors are marginally better for a linear temperature fit. Taking the average value 
of (qy) = 0.9 from the above data, Ro = 31 kSZ extracted from the data for 27 wires in 
parallel, and a length of 3.2ym, we extract a value for = 2.1 x lo-’* SI units 
(W m K-2) ,  with an 120% error. 

In figure 2, we plot the temperature profile for the higher levels of currents used in 
experiments with lattice temperature of 0.47 K. We see (i) a substantial temperature 
rise to 5.2 K (with a rise to 7.5 K when the lattice temperature is 4.2 K) showing that the 
wires are driven far from their ambient condition, and (ii) that the temperature variation 
of the thermal conductivity results in a rather flatter temperature distribution than the 
parabolic form -x(L - x) expected if the thermal conductivity were constant: the 
temperature in the middle would rise to 8.83 K instead of 4.51 K if a constant thermal 
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Figure 1. The experimental data and theoretical 
fits for an intermediate lattice temperature of 
1.02 K. 
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Figure 2. A plot of the temperature profile for 
maximum current for the case of a lattice tem- 
perature of 0.47 K, but with approximately50 nA 
passing through each wire. 

conductivity, evaluated at the lattice temperature were used. The fact that good agree- 
ment can be achieved with a one-parameter fit implies that the form of the temperature 
dependence G ( T )  in equation (3.1) holds well over the 0.5-10 K range, and possibly 
that electron heating is a major contribution to the explanation of the results. 

7. Implications 

We consider now the possible thermal conduction mechanisms and how they could 
explain the fit to the data. 

7.1. Linearly T-dependent thermal conductivity; electronic contribution 

We can evaluate the Wiedemann-Franz ratio for our system, to see to what extent the 
electronic contribution to the thermal conductivity is sufficient to explain our results. 
We obtain a one-dimensional electrical conductivity from the experimental data as 

oID = L / R  = 1.03 x 10-l’ W1 m 

where R is the resistance of one wire, and L its length. In our case we would deduce a 
Lorenz number 

3 = K/oT = q / ~  = 2.1 x W S2 K-’ 

which is within 20% (cf. the confidence of our estimate for q )  of the value of 2.44 x lo-* 



Electron heating effects in GaAs fine wires 1823 

that would allow us to explain the results solely in terms of electronic contributions to 
the thermal conductivity. While we might invoke some phonon contribution to the 
thermal transport, it is clear that the electronic contribution is the most important 
ingredient. At first sight this is surprising as, in comparison with metals, there are very 
few carriers present, and one might expect a much smaller electronic contribution to the 
thermal conductivity. 

7.2.  Linearly T-dependent thermal conductivity; I D  lattice contribution 

The dominant phonon wavelength of a black-body distribution at temperature T(K) is 
given by 100 nm/T, so that at the lowest temperatures, we have O(10) ID phonon sub- 
bands excited, a number that rises to O( lo3)  at the highest temperature. In a clear search 
for phonon effects in the present samples, we should reduce the temperature to = 
200 mK. In a ID Debye theory, the specific heat per ID phonon branch is ( ~ k ~ ) ~ T / ( 3 h c )  
where cis the speed of sound, and kB the Boltzmann constant. The thermal conductivity 
can bewrittenasK = (7tkB)*AP T/(3h), whereA,is thephononmeanfreepath. Thisgives 
K - 6 x lO-'*A,T(W m K-perbr branch. Givenourvalueof q above, andassumingonly 
phonons contribute, our results would imply a product, NBA,, of the number of (lateral) 
phonon branches participating in the thermal conduction multiplied by the phonon 
mean free path of only 0.6 pm. Not only does this lead to a very short mean free path, 
but the temperature independence of q implies that there is an (unlikely) cancellation 
between the temperature dependences of the number of lateral branches participating 
and the mean free path of the phonons. The electronic mechanism provides a neater 
explanation. 

7.3. Further analysis 

We can take our analysis of the data several stages further. To do so, we estimate relevant 
transport length and time scales. A phonon emitted in the middle of our wire takes = 
0.5 ns to escape if it travels at the speed of sound. The time for an electron to diffuse 
from the centre of the wire to either end is reXit = 12 ns. The magnetotransport data of 
Potts et a1 (1980) have been analysed to infer an inelastic scattering length for electrons 
of ~ 0 . 2  pm, and the conductivity implies an elastic scattering length of = l o  nm. We can 
use the data of Holland (1963, 1964) on macroscopic samples of GaAs with doping 
comparable to ours to infer a boundary limited phonon mean free path of -0.5 cm. 
This implies an intrinsic electron-phonon scattering time rep in excess of 1.2 ps in his 
experiments. If we assume that this characteristic time is not greatly different for our 
much smaller sample, then rep > reXit. A hot electron in the middle of the wire will diffuse 
out in 1/100 of the time it would take to emit a phonon. Any phonon that was produced 
would escape the wire in less than 

In this regime the lattice remains cold-only the electrons are heated. The electron- 
electron scattering will thermalise the electrons over a distance of 0.2 pm, so electrons 
near the end of the wire will be cooler than those in the middle. This is quite different 
from what one normally expects, because the heat is being lost from the middle of the 
wire by the electron thermal conductivity to the cold electrons at the ends. Normally the 
hot electrons in a large sample (large in comparison with the electron-phonon scattering 
length for electrons) lose their energy to the phonons. In our case we can ignore the 
phonon bath except in as much as it contributes to cooling electrons at either end. In 

of the time before another phonon is emitted. 
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Figure 3. A schematic diagram of the temperature profile showing the heat transfers Q,, 
(Qpx) from electrons (phonons) exiting from the wire, and Qep from electrons to phonons, 
in the regime of (a )  delocalised, and ( b )  localised phonons. In both cases T,(max) is deter- 
mined by the thermal conductivity of the electrons. In (a)  the lattice stays cold, and heat is 
conducted out by diffusion of hot electrons into the cold electron baths at either end, while 
in ( b )  the lattice does warm to the local electron temperature, but the localised phonons are 
ineffective in carrying away the excess energy. Our estimates would imply that the situation 
in (a )  applies. 

figure 3(a) we show the situation we have just described, while in figure 3(b) we show 
an alternative explanation if all the phonons were localised, but even in this case, the 
heat loss and therefore temperature profile is set up by the thermal conduction of the 
electrons. 

7.4.  Other work 

Taylor et a1 (1989) have measured electron heating effects on submicrometre n+-GaAs 
wires that still remain on a semi-insulating GaAs substrate. Although they use an 
electron heating model, their detailed analysis differs from ours in not being able to use 
the thermal conductivity because of the large thermal reservoir of the substrate. They 
obtain a temperature-independent energy relaxation time, and invoke by way of expla- 
nation a series of near-elastic scattering events at the surface of the wires. It would be 
tempting to analyse their data, which are qualitatively similar to ours, with a purely 
electronic heating mechanism, leaving the phonon and other relaxation processes to 
their contact regions. In earlier work on nearly free-standing (sub-micrometre diameter) 
wires of the same 10 pm length as those used by Taylor et al ,  we obtained similar data 
to those reported in this paper, so even on this scale, the phonons play at most a modest 
role in the thermal transport in comparison with the electrons. Our limited range of 
temperature and magnetic fields at present relate to measurements on free-standing 
samples, in which a vacuum environment is essential: the samples are not expected to 
withstand intimate contact with turbulent or viscous fluids as occurs in most other 
transport studies of quasi-one-dimensional systems. 
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8. Summary 

In summary, although we have persisted in our search for quasi-1D phonon transport 
phenomena, it seems in the present case, even for wires of 0.5 pm diameter, the system 
is strongly influenced by electron heating effects that mask any specifically phonon 
effects in the 0.4-4 K regime over which the experiments are performed. If they could 
be performed on a gated sample in the millikelvin range, we would expect a sharp drop 
in the electrical conductivity as a metal-insulator regime is induced for the electrons, 
and a different form of temperature dependence of G( T )  would follow. With few lateral 
phonon branches being excited at these very low temperatures, and with strongly 
localised electrons, the results of electron heating might allow the one-dimensional 
phonon contribution to the thermal conductivity to be unmasked. Note finally the 
possibility of carrying out experiments on a free-standing heterojunction: if the very 
high electron mobilities in the two-dimensional electron gas survive the fabrication 
process, the ballistic motion of carriers in wires of (say) 5-10 pm, at least for low heating 
currents, should enable the energy to be swept out of the wire, resulting in very small 
temperature rises. If the short phonon mean free paths inferred in section 7.2 above 
were still to apply, quasi-one-dimensional phonon transport may remain elusive. 
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